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Abstract. A previous investigation of the stability of static onedimensional S D  

lutiom of the LandawGinzburg equation with a quartic non-linearity is extended. 
Exact spatidy varying solutions are modified by small amplitude, timedependent 
perturbations. In contradiction to the esse of part I of this study, these are not 
sssumed to have small Irequeney w and s m a l l  decay rata 7. We show that dl p e  
riodic solutions, as well as the solitary waves, a m  unstable with respect to this new 
type of perturbations. The kink solution is etabk with respect to all perturbations 
conaiderrd. When the results of both parts of this paper are put together, we obtain 
M extensive stability analysis of static solutions to the Landau-Ginzburp equation. 
This -tion is important in fluid dynamics, solid state and superconductivity t h e  
ory, as well as other branches of physics. The paper is self-contained and can be read 
independently of part I. 

1. Introduction 

We consider the Landau-Ginzburg equation in the form 

(i/r)aM/at = 2P11.i - v ' ( M )  r > 0. (1.1) 

For applications and an interpretation of parameters in each case see, for example 
Khan (1986), Winternits el a[ (1988), (magnetic phase transitions); Nabarro (1979), 
Lowen and Oxtoby (1990), Harrowell (1987), Dieterich (1990), Munakata (1990) (var- 
ious solid state contexts including dynamical extensions of density functional theory); 
Chen and Whitehead (1968) (Bhard cell context); Infeld et d(1990), (nucleation of 
coherent structures); and Infeld and Rowlands (1990) (plasma physics). 

Among the solutions obtained to (1.1) are spatially one-dimensional ones express- 
ible in terms of Jacobi elliptic functions sn(z ,K) ,  cn(z,K) and dn(z ,K)  and their 
limiting cases: solitary pulses and kinks for K -+ 1 and trigonometric functions for 
X + 0. In Grundland et ol (1990), referred to as part I, we considered approximate 
solutions, obtained by adding to the non-linear waves small amplitude perturbations 
with wavelengths much larger than those of the non-linear waves. We then expanded 
in the wavenumber k of the perturbation and obtained the temporal behaviour. The 

5 Permanent address: Iastitute for Nuclear Studies, Hoia 69, Warsaw 00681, Poland. 
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method used is due to Infeld and Rowlands (1979) and is described in chapter 8 of 
Infeld and Rowlands (1990). For all cases considered, the frequency w or growth rate 
7 were proportional to k Z .  The non-linear cnoidal waves, as well as their solitary 
wave limit, were stable with respect to small le perturbations. The waves described 
by the sn and dn functions were unstable but those described by cn functions were 
stable. The kink solution, corresponding to BIoch domain walls in the magnetic phase 
transition context, was found to be marginally stable. 

In the present analysis we will look at a different class of perturbation, having 
exactly the same parallel component of the wavevector as the basic non-linear wave. 
New instabilities appear and in fact only the kink solution survives both tests and so 
far seem to be stable. 

The complete analysis (parts I and 11) illustrates how complementary different 
stability calculations can be. One should he very cautious about concluding that a 
solution is stable just from one, limited calculation. On the other hand, our stability 
classification is now reasonably complete for the Landau-Ginzburg equations, as all 
solutions but one are seen to be unstable. In that sense the pursuit of further instabil- 
ities could add nothing new. However in a given experimental configuration one must 
check whether the instability found here (or one of them when there are several) can 
build up fast enough to destroy our non-linear structure. 

2. Linearization in perturbed quantities 

Suppose we have an z-dependent solution to (LI), M o ( z ) ,  and perturb it 

M ( z , t )  = M o ( z ) + 6 M ( z , t ) .  (2.1) 

- 1 / r ( 6 M ) t  + 2V26M - V”(M0)6M = 0.  (2.2) 

If we linearize in 6M we obtain, from (1.1) 

Since the coefficients in (2.2) are independent of time and periodic in I, we use Flo- 
quet’s theorem (Ince 1956) to write 

6 M ( z ,  t )  = $(I) exp(ik. z - 7 t )  (2.3) 
where $(z)  is periodic in z with the same period as MO. In part I, the modulus of 
the real wavenumber k = (k,’ + kV2)’/’ was considered to be small, as was 7. Here 
in part I1 we take k, to be zero and kv arbitrary. The value of 7 is not assumed to be 
small and in fact will follow from the analysis. For the moment we will keep k, in the 
equations. 

The function $ satisfies 

L$ = -(7~r)$ - 4ik,a$/ax + 2k2$ 

a 2  

ax’ L = 2- - V”( MO), 

In what follows we will take f 

V ( M )  = -cM4 + 2bM2 +a. (2.5) 
Equations (2.3), (2.4) and (2.5) will he the basis of our subsequent analysis. 

t There is a misprint on page 7147 of part I, when minus this quantity appears (Line 6 down). Also 
A&‘ in equation (3.1) should be M,*, and M1 in the figure captim on page 7148 should be M S 2 .  
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2.1. Constant M limit 

One simple solution to (1.1) is the constant one such that 

V’(M) = 0 

given from (2.5) by 

MO2 = b/c. 

The stability analysis is particularly simple to perform in this limit and the result will 
help us understand things to come. We now look at perturbations such that lo(+) in 
(2.3) is constant. We obtain, from (2.3) and (2.4), 

7/r = -86 + 2k2.  (2.6) 

In much of what follows we will be concerned with k = 0 and will hope to recover the 
7/r = -86 root in the M + MO limit. 

2.2. Small k limit 

In part I we found solutions such that 7 - kZ for all cases, Thus, in the zero k limit 
we expect 7 = 0 to be a root for all cases. 

To sum up the results of subsections 2.1 and 2.2: y = 0 should appear as a root 
for all classes of non-linear wave and soliton; 7 = -8rb should appear as a small 
amplitude root for the class that contains M = MO (the case described by the dn 
function, figure l ( a )  of part I). 

2.3. Classification of ezact solutions 

Exact, one variable dependent solutions to (1.1) were classified in detail in part I. 
However, we will now repeat this classification very briefly. Details and appropriate 
phase space (M, ,M)  diagrams can be found in part I. 

Equation (1.1) in one variable z is integrated once to give (using (2.5)) 

MZ2 = a + 2bM2 - cM4 

so roots of MZ2 are located at 

b * (b2 + ac)’I2 
M1J2 = C 

Meaningful solutions are always such that M is bounded by two (real) roots from 
among these four. The three classes of solutions are denoted by (I), (II) and (111) as 
follows: 

(I) All four roots +MI, fM2 real and c > 0. 

M = 44f2dn[c’’2M2(z - zo), q] 

q2 = 1 - M 1 2 / M 2 2 .  
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In the constant M limit considered earlier 

M, ,2  = b/c and 8 = 0. 

In the soliton limit q2 -+ 1 we have 

M = AMzsech[c’/ZMz(z - zO)] M2 = 2b/c.  (2.10) 

See figures l (a)  and (b), part I. 
(11) Two real roots AM,, and two imaginary ones &iIM,[, and c > 0. Now 

2 112 M = i21,cn[{c(Mf + lM21 1) (2 - zo)nl 

M2 = i[Mzl # 0. M? 
qz = M: + lM2[2 

(2.11) 

See figures l (c)  and (d) of part I for 0 and b > 0 respectively. 

only obtain the trivial limit M = 0 (disordered phase). 
For M, -+ 0, i.e. g2 - 1 we reamer the solitary wave (2.10) again. For q2 - 0 we 

(111) Four real roots and c < 0. 

M = M ,  sn[1c1”2M,(z - zo),q] 

q2 = (Mi/Mz)2. 

In the qa = 1 limit we obtain the kink 

(2.12) 

M = &MI tanh[lcl’/2M,(z - zO)] (2.13) 

whereas qz - 0 corresponds to the disordered phase 

3. Stability analysis for k, = 0 

We will now perform a small perturbation stability analysis around the solutions given 
in section 2.3 assuming k, = 0. The perpendicular component kg can be arbitrary and 
y/r for arbitrary k, can be obtained from the result for k,, = 0 by shifting according 
to 

y(0) + zk., 
r r 

In what follows we will not bother about the kg dependence other than to observe 
that non-zero k, always stabilizes these modes, just as it did the modes of part I. 

The basis of our analysis will be a consideration of the equation 

- + [ X - 6 q 2 s n 2 ( u , q ) ] +  d2$ = O  
du2 

This is a special case of the Lam& equation, see Magnus and Winkler (1972). The 
eigenvalues and eigenfunctions of (3.2) will be related to those of (2.4) with k= = 0 
and MO given by the formulas of section 2.3 one after the other. We have U = 
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Table 1. ~g&CtiOM and eigenvdues of the LsmC equation (3.2). The arguments 
and modules of the Jaeobi elliptic functions are the same as in (3.2). 

u0(z - I,,), uo given in (2.9)-(2.12), respectively. Patera and Winternitz (1973, 1976) 
have shown that there are exactly five eigenvalues of (3.2) associated with five hounded 
eigenfunctions $, (for early work, covering special cases only, see Infeld and Hull 
(1951)). The other five eigenfunctions are unbounded in I and therefore of no interest 
here. The bounded eigenfunctions are given in the Patera and Winternitz references. 
However, we now give them in different form, more easily verifiable in our context, 
and order them so that  A,, decreases with n .  They are shown in table 1. 

Eigenvalues never cross and they merge two by two in the two limits q = 0 and 
q = 1 to form a 'coiled snake' figure. An illustration of this kind of behaviour can 
be found in Patera and Winternitz (1976, figure 1). The first and last eigenfunctions 
could have been found by looking for (const + M 2 )  eigenfunctions without even using 
the form of the solution! We see from table 1 that the solution & is singular in the 
limit p = 0. In this limit (3.2) reduces to 

d2&/du2 = 0. 

Since qh5 is linear in U, a secular term appears in general. The constant solution is 
valid. 

Table 2. Growth rates for dn-waves; r as in table 1. 

=, = 7/[zr*~ s(q = 0) ;  af,, q n 2  = 1 ) ;  

qz - 2 + 2, 0 1 

3(42  - 1) -3 0 

q 2 - 2 - 2 r  -4 -3 

0 0 0 

-3 -3 -3 

Table 3. Growth rates for m-waws; r as in table 1. 

-a$ + 1 + 2, 3 1 
3 0  - ,221 3 0 

-3q2 0 -3 
-2q2 + 1 - 27 -1 -3 

0 0 0 
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Table 4. Growth rates for sn-waves; I -in table 1. 

1 t 6" +2r 3 4 

3 8  

1 t q z  = 27 -1 0 

3 3 3 
0 3 

0 0 0 

We now write (3.2) in two other, equivalent forms using the identities snz+cn2 = 1 
and dnz + q2snz = 1 : 

d2$/du2 + [ A  - 69' + 6qzcnz(u,q)]$ = 0 
dZ$/du2 + [A - 6 + 6dnz(u, q)]+ = 0 

(3.3) 
(3.4) 

and use the information given in table 1 to solve (2.4) for the three principal forms of 
MO. We obtain , after dropping zo, the following results. 

Case 1. M = M2dn[c1~*M,z,q]. The growth rates are summed up in table 2. 

We recover the constant M limit, M Z  = b/c, 7/r = -86, as well as the small 7,k 
case, which for our purposes is 7 = 0 throughout (second case). The other three mots 
(first, third, fourth) are completely new. As negative 7 means instability, we have two 
new unstable modes. All case 1 non-linear waves and the soliton are unstable. 

Case 2. M = M ,  cn[c(M: + ~(Mz)~z)1~2z,q].  The growth rates are summed up in 
table 3. 

The soliton limit is common to cases 1 and 2 and this gives a check on the results. 
All waves and also the soliton h i t  are unstable. All statements for n = 5 in the 
q = 0 limit must be taken with a grain of salt, since this is the one and only case 
where secular terms are present in the perturbative expansion, invalidating the very 
expansion used. 

Case 3. M = M , s n [ l ~ l ' ~ ~ M ~ z , q ] .  The growth rates are summed up in table 4. 

The values at the p = 0 limit are common with those of case 2. Values at the 
q2 = 1 limit are minus those for the q2 = 0 limit of case 1. All non-linear waves are 
unstable, though the number of unstable perturbed modes has decreased to one. The 
kink, however, is stable. It is the sole 'survivor' of this analysis in terms of stability. 
This is important, as the kink solution is significant in magnetic phase transition 
considerations (as well as other situations in which we have a transition between two 
distinct regions.) Inclusion of kz corrections further stabilizes the kink (this is always 
true of ki corrections as already seen). 

We see that  for the dn solution we have obtained three unstable modes n = (3,4,5), 
for cn two (4,5), and for sn one (5). (The analysis does not apply for n = 5, q = 0, 
as secular terms are present in the perturbation expansion.) All non-linear periodic 
solutions are unstable with respect to the perturbation considered here, as are the 
solitary waves. 
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4. Summary of parts I and I1 

We have performed two complementary stability calculations. In part I some of the 
non-linear waves were seen to be unstable. In part I1 it was shown that among all the 
nonzero static solutions of the Landau-Ginzburg equation ‘(1.1) with potential (2.5), 
only the kink is stable with respect to all time-dependent perturbations considered. 
This in itself is important, since the kink corresponds to domain walls and is hence 
significant in many physical studies. Whether any of the exact solutions are observable 
in concrete physical settings depends primarily on the type of perturbations that 
occur. In any case, the indication is that we are dealing with transient phenomena 
corresponding to exact static solutions. The rate at which they will disappear depends 
on the numerical values of the growth rate y in each specific physical situation. 

Recently Lowen and Oxtoby (1990) looked at a form of the non-linear Landau- 
Gingzburg equation where two parabolas were taken to model the non-linear term. 
This makes it possible to obtain exact solutions corresponding to the relaxation of 
step function distributions to the ‘kink’ profile. In our analysis the kink is stable and 
is also expected to be so for the two-parabola V ( M ) .  Otherwise the two calculations 
(Lowen and Oxtoby’s and ours) are different but somewhat complementary. 
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